Modellierung, Entwurf und automatisierte Herstellung von Multilayer-Polymeraktoren

Modeling, design and automated fabrication of polymer-based multilayer actuators

Thorben Hoffstadt, Dominik Tepel und Jürgen Maas

VDI GMA-FA 4.16 “Unkonventionelle Aktorik”
Vortrag im Rahmen des Workshop der Nachwuchswissenschaftler
Outline

1. Introduction

2. Modelling of DEAP-based multilayer actuators

3. DEAP stack-actuator design

4. Automated manufacturing process

5. Conclusion
1. Electroactive Polymers – Introduction

Considered will be electronic EAPs and in particular dielectric electroactive polymer transducers denoted as DEAP transducers.

- Fundamental design of a DEAP transducer

- Functional principle is based on the electrostatic pressure that results when the DEAP is charged:

\[
\sigma_{el} = \varepsilon_0 \cdot \varepsilon_r \cdot E^2 = \varepsilon_0 \cdot \varepsilon_r \cdot \left(\frac{v_p}{t}\right)^2
\]

\(v_p = 0\) V \(\neq 0\) V
1. Properties of DEAP-based transducers

- Polymer acts as a dielectric
 - capacitance C_p
- Parasitics of polymer and electrode
 - loss resistances R_p and R_e

- Electrical Parameters depend on the mechanical state
 - Due to the **electromechanical coupling** DEAP transducer can be used as actuators, sensors and generators

Electrical Energy

Mechanical Energy

(C) Control Engineering and Mechatronic Systems - Prof. Dr.-Ing. Jürgen Maas, Thorben Hoffstadt
Modeling, design and fabrication of DEAP actuators
1. DEAPs as sensors and generators

DEAP as sensor
- Electrical parameters depend on mechanical state λ
- Identification of at least one electrical parameter

Sensor-based concepts
DEAP exclusively used as sensor

Sensor-less concepts
DEAP transducer is simultaneously used as sensor

DEAP as (electrostatic) generator

- Initial system
- Discharge DEG
- Charge DEG
- Maximum field strength
- Relax DEG
- Minimum strain
- Stretch DEG
- Maximum strain
1. DEAP Multilayer Actuators for pulling and pushing

Actuation in direction of the electric field

- **Compression** of the polymer in z-direction
- **Pulling force** in z-direction

Actuation perpendicular to the electric field

- **Elongation** of the polymer in z-direction
- **Pushing force** in z-direction

DEAP stack-actuator

Multilayer \Rightarrow increasing the absolute deformation Δl

$\Delta l \Rightarrow \lambda_z < 1$

$V_{DE} \neq 0 V$

DEAP roll-actuator

Multilayer \Rightarrow increasing the pushing force

$\Delta l \Rightarrow \lambda_z > 1$

$v_{DE} \neq 0 V$

(C) Control Engineering and Mechatronic Systems - Prof. Dr.-Ing. Jürgen Maas, Thorben Hoffstadt

Modeling, design and fabrication of DEAP actuators
1. Applications of DEAP multilayer actuators

- DEAP actuators are predestined for position applications in small devices
- Promising technology e.g. for automation applications, haptic feedback...

DEAP actuators are predestined for position applications in small devices and are promising technology, particularly for automation applications such as haptic feedback.

- pneumatic valves & gripper

- electrical contactors

- force feedback glove
1. DEAP Roll-actuator with polymer core

- New roll-actuator design
- Bi-axially prestretched active material is winded up around compressed polymer core.
- Prestretched polymer core must support the force in the operating point of the actuator caused by the prestretched DEAP material.

1. DEAP Roll-actuator with polymer core

No-load-strain behavior of the realized prototype:

Parameters of the prototype:

\[l_0 = 31\,\text{mm}; \quad t_0 = 40\,\mu\text{m}; \quad N = 20; \quad r_{o,N,0} = 5\,\text{mm} \]

\[\lambda_{z,EAP} = 1.07; \quad \lambda_{y,EAP} = 1.2; \quad Y_{EAP} = 4.5\,\text{MPa}; \quad Y_{core} = 1\,\text{MPa} \]
2. Modelling of DEAP-based multilayer actuators

- Stack-actuator: actuator films are
 - mechanically connected in series
 - electrically connected in parallel

One actuator film describes the stretch-force-behavior of the whole actuator

Electrode

Polymer

\[t = \lambda_z \cdot t_0 \]

Electromechanical coupling:
\[\sigma_{el} = \varepsilon_0 \cdot \varepsilon_r \cdot E^2 \]

Yield strength:
\[Y = 3\text{MPa}; \varepsilon_r = 7; \]
\[A_0 = 64\text{mm}^2 \]

Current limit under consideration of the lifetime

\[F_{act} = A \left[\sigma_{el} - \sigma_{elast} \right] = \frac{A_0}{\lambda_z} \cdot \left[\varepsilon_0 \cdot \varepsilon_r \cdot \frac{E_0^2}{\lambda_z^2} + \frac{Y}{3} \left(\lambda_z^2 - 1 \right) \right] \]

Hyperelastic material behavior:
\[\sigma_i = \lambda_i \cdot \frac{\partial W}{\partial \lambda_i} - p \]

Using Neo-Hookean approach, equibiaxial deformation in x- and y-direction

2. Stretch-force-behavior of a DEAP stack-actuator

- Optimizing the actuator based on a dimensionless, normalized stretch-force-behavior

 - energy density u_c stored in the (constant) DEAP capacitance:

 $$u_c = \frac{U_c}{V} = \frac{C_p \cdot V_p^2}{2 \cdot V} = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot E^2 = \frac{\sigma_{el}}{2}$$

 - substitution of the electrostatic pressure:

 $$F_{act} = \frac{A_0}{\lambda_z} \cdot \left[2 \cdot u_c + \frac{Y}{3} \cdot \left(\lambda_z^2 - \frac{1}{\lambda_z} \right) \right]$$

 - normalizing the force and the energy density a dimensionless charateristic results:

 $$\frac{F_{act}}{A_0 \cdot Y} = \frac{1}{\lambda_z} \cdot \left[\frac{2 \cdot u_c}{Y} + \frac{1}{3} \cdot \left(\lambda_z^2 - \frac{1}{\lambda_z} \right) \right]$$

2. Stretch-force-behavior of a DEAP stack-actuator

- Operation with constant energy density equals operation with constant electric field

\[
\frac{u_c}{Y} = \text{const.} \quad \Rightarrow \quad E = \frac{v_p}{t} = \text{const.} \quad \Rightarrow \quad v_p = E \cdot t_0 \cdot \lambda_z
\]
2. Design Optimization

- Stretch-force-behavior has two characteristics
 - **Blocking-force** (obtained if the actuator cannot deform)
 - **No-load-stretch** (obtained if the actuator generates no force → free stroke)
2. Design Optimization – Blocking-Force

- Operating the actuator at a constant stretch $\lambda_{z,0}$ the resulting force is linearly increased with the electrical energy density:

$$\frac{F_{\text{act}}}{A_0 \cdot Y} = \frac{2}{\lambda_{z,0}} \cdot \frac{u_c}{Y} + \frac{1}{3} \left(\lambda_{z,0} - \frac{1}{\lambda_{z,0}^2} \right)$$

- If a pre-stretch (load) $\lambda_{z,0}$ is applied the blocking-force results to:

$$\frac{F_{\text{act}}}{A_0 \cdot Y} = \frac{2}{\lambda_{z,0}} \cdot \frac{u_c}{Y}$$

→ Blocking-Force is **scalable by cross-sectional area** A_0 but is **independent from the Young’s modulus** Y

→ Slope is adjustable by applied **pre-load** $\lambda_{z,0}$

Blocking-Force is scalable by cross-sectional area A_0 but is independent from the Young's modulus Y. Slope is adjustable by applied pre-load $\lambda_{z,0}$.
2. Design Optimization – No-Load-Stretch

- The no-load-stretch is obtained if no force is exerted:

\[F_{act} = 0 \quad \Rightarrow \quad 2 \cdot u_c = \sigma_{elast} \]

\[\lambda_z = (\beta) \frac{2 \cdot u_c}{Y} \cdot \frac{1}{\beta}, \]

with \(\beta = \sqrt[3]{\frac{8 \cdot u_c^3}{Y^3} + \frac{1}{4} + \frac{1}{2}} \)

- Using a linear-elastic approach a comparable equation results:

\[\sigma_{elast} = \varepsilon_c \cdot Y = (\lambda_z - 1) \cdot Y = -2 \cdot u_c \]

\[\lambda_z = 1 - \frac{2 \cdot u_c}{Y} \quad \Rightarrow \quad (\beta = 1) \]

- No-Load-Stretch is independent from the geometry but decreases with increasing Young’s modulus \(Y \):
2. Design Optimization – Coupling Coefficient

- **Optimization of mechanical work density** with respect to the applied electrical energy

 - Instantaneous mechanical work:
 \[
 w = \frac{W}{V} = \frac{F_{act} \cdot \Delta l}{V} = \frac{F_{act}}{A_0} \cdot (1 - \lambda_z)
 \]

 - This also yields to a normalized mechanical energy density:
 \[
 \frac{w}{Y} = \frac{1 - \lambda_z}{\lambda_z} \cdot \left[2 \cdot \frac{u_c}{Y} + 1 \cdot \left(\lambda_z^2 - \frac{1}{\lambda_z} \right) \right]
 \]

 - Operating point with maximum electromechanical coupling:
 \[
 \frac{d \ w}{d \lambda_z} = 2 - \lambda_z \cdot \left(1 + 6 \frac{u_c}{Y} \right) + \lambda_z^3 - 2 \lambda_z^4 = 0 \quad \Rightarrow \quad \lambda_{z, opt}
 \]
2. Performance Limitations

- Operating the stack-actuator with a **constant voltage** a corresponding initial energy density results:
 \[
 \frac{V_{p,0}}{t_0} = \frac{V_p}{t} \cdot \lambda \Rightarrow u_{c,0} = u_c \cdot \lambda^2
 \]

- Effect of **electromechanical instability** occurs if:

\[
\frac{2 \cdot u_{c,0}}{Y} > \frac{\sigma_{elast}}{Y} + \frac{F_{\text{load}}}{A \cdot Y}
\]

- Instability **limits the maximum stretch** depending on the generated force

2. Performance Limitations

- Depending on the exerted force the critical stretch and corresponding energy vary.
- Electromechanical instability limits the

- **Maximum No-Load-Stretch**
 \[\lambda_{z,\text{crit}} \left(F_{\text{act}} = 0 \right) = \frac{3\sqrt{2}}{2} \approx 0.63 \]
 \[u_{c,0,\text{crit}} \left(F_{\text{act}} = 0 \right) = \frac{3\sqrt{2}}{16} \approx 0.079 \]

- **Maximum Blocking-Force**
 \[\frac{F_{\text{act}} \left(\lambda_{z,\text{crit}} = 1 \right)}{A_0 \cdot Y} = \frac{1}{3} \]
 \[u_{c,0,\text{crit}} \left(\lambda_{z,\text{crit}} = 1 \right) = \frac{1}{6} \]
2. Design Optimizations – Conclusion

- Based on the static model of a DEAP stack-actuator the Blocking-Force and No-Load-Stretch were investigated

<table>
<thead>
<tr>
<th>Blocking-Force</th>
<th>No-Load-Stretch</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\text{act}} \uparrow$ with $u_c \uparrow$</td>
<td>$\Delta l \uparrow$ with $u_c \uparrow$</td>
</tr>
<tr>
<td>$F_{\text{act}} \uparrow$ with $A_0 \uparrow$ (A_0: free design parameter)</td>
<td>$\Delta l \uparrow$ with $Y \downarrow$, $l_0 \uparrow$ (Y: material parameter l_0: free design parameter)</td>
</tr>
</tbody>
</table>

Electromechanical Instability

$F_{\text{act}} \left(\lambda_{z,\text{crit}} = 1 \right) = \frac{A_0 \cdot Y}{3}$

$F_{\text{act}} \left(\lambda_{z,\text{crit}} = 1 \right) \uparrow$ with $A_0, Y \uparrow$

$\lambda_{z,\text{crit}} \left(F_{\text{act}} = 0 \right) \approx 0.63$

$\Delta l \uparrow$ with $l_0 \uparrow$

optimal operation point $\Rightarrow \kappa = f \left(u_c \right)$

maximum electromechanical coupling $\Rightarrow \lambda_{z,\text{opt}}$

\[\Delta l = \left(1 - \lambda_z \right) \cdot l_0 \]
3. DEAP stack-actuator design

- Increase of absolute deformation and force → multilayer actuator
- By **stacking** the actuator films to the designated height and **alternating the direction of the contact tab**, the DEAP stack-actuator is obtained.

![Diagram of DEAP stack-actuator design](image)

\[
\sigma_{el} = \varepsilon_0 \varepsilon_r \frac{V^2}{t^2}
\]

4. Manufacturing of DEAP Stack-Actuators

- Dry deposition process:
 - divided into several processing steps
 - fabricate stack-actuators with reproducible and homogeneous properties
4. Manufacturing of DEAP Stack-Actuators

Sub-process 2: applying electrodes and folding

- DEAP film is fixed on the vacuum folding table
- a mask is positioned over the elastomer
- a nozzle is positioned over several sectors and electrodes are applied
- DEAP film with the applied structured electrodes is folded

⇒ after 4 spraying and 3 folding processes an actuator module is created whose thickness is 8 times higher than the single film

⇒ due to the very thin DEAP films, the films are folded to facilitate the handling
4. Manufacturing of DEAP Stack-Actuators

Sub-process 3: stacking of DEAP sub-modules to designated height

- Folded DEAP film module is lifted by the vacuum gripper.
- Folded DEAP film module is transported to the film carrier of the rotary index table.
- Folded DEAP film module is stacked and laminated on top of each other.
4. Manufacturing of DEAP Stack-Actuators

Sub-process 4: cutting by a ultrasonic knife to separate DEAP stack-actuators

- Stacked DEAP film module is fixed and transported by the film carrier of the rotary index table
- Individual actuator modules are cutted out
- Individual actuator modules are separated
4. Contacting of the DEAP stack-actuator module

- To realize a transition from the elastic DEAP to the stiff wiring of the power electronics, a DEAP contacting film is used, which does not harm the actuation.
- To protect the DEAP stack-actuator against environmental influences, the actuator is encapsulated by winding a polymer film around the stack-actuator.

a) contacting pins are rolled into the contacting film
b) wound around the actuator module in a pre-stretched condition
c) end cap with grooves is applied to fix the contacting pins
d) a polymer film is wound around the stack-actuator

4. Experimental validation of the actuator design

DEAP stack-actuator

“No-Load-Stretch” behavior of the produced DEAP stack-actuator:

Parameters of the stack-actuator:

\[t_0 = 50\text{µm}; \; Y = 3\text{MPa}; \; \varepsilon_r = 7; \; N = 160 \]
5. Conclusion

- DEAP transducer can be used as actuators, sensors and generators
- Based on an analytical model of a DEAP stack-actuator design rules can be obtained.

DEAP technology is an energy efficient alternative for conventional actuators with further excellent properties.

However, concerning the material and the manufacturing a lot of R&D has to be done.
Acknowledgement

This contribution is accomplished within the project "Dielastar - Dielektrische Elastomere für Stellaktoren“ (Dielectric Elastomer Actuators), funded by the Federal Ministry of Education and Research (BMBF) of Germany under grant number 13X4011, see www.dielastar.de.
Thanks for your kind attention!

Thorben Hoffstadt
Ostwestfalen-Lippe University of Applied Sciences
Department of Electrical Engineering and Computer Science
Control Engineering and Mechatronic Systems
Thorben.Hoffstadt@hs-owl.de
Phone: +49 (0)5261 702-5487

Dominik Tepel
Ostwestfalen-Lippe University of Applied Sciences
Department of Electrical Engineering and Computer Science
Control Engineering and Mechatronic Systems
Dominik.Tepel@hs-owl.de
Phone: +49 (0)5261 702-5067

Jürgen Maas
Ostwestfalen-Lippe University of Applied Sciences
Department of Electrical Engineering and Computer Science
Control Engineering and Mechatronic Systems
Juergen.Maas@hs-owl.de
Phone: +49 (0)5261 702-5871